
Internationaldournal of Theoretical Physics, Vol. 8, No. 4 (1973), pp. 263-276 

Approximate Radiative Solutions of the 
Yang-Mills Field Equations 

R I C H A R D  K E R N E R  

Departement de M~canique, Universitd de Paris VI, 11 Quai Saint Bernard, Paris 

Received: 8 October 1972 

Abstract 

In this paper we look for the asymptotic radiative solutions of the Yang-Mills field 
equations. Considering the potential of the Yang-MiUs field as a connection in a principal 
fibre bundle gives us a fully covariant formalism similar to the formalism of the General 
Relativity. Then we apply directly the results obtained by Mme Choquet-Bruhat for the 
gravitational field by means of the W.K.B. method. After deriving the equations for the 
asymptotic waves and interpreting the zero-order conditions as the initial conditions, we 
consider some known trivial solutions of the Yang-Mills field equations as the 'back- 
ground field' and construct the asymptotic waves explicitly. All the solutions considered 
turn out to be of the electromagnetic type, with some extra restrictions of the algebraic 
type. 

1. Introduction 

This paper is basically a generalisation o f  the work done by Mme  
Choquet -Bruhat  (1964) on the approximate radiative solutions o f  
Einstein's equations. By using the fact that  the Yang-Mills field theory can 
be constructed in a purely geometrical way as a special case o f  the 
Riemannian fibre bundle (Kerner, 1968), we can apply directly almost  all 
the results obtained by Mine Choquet-Bruhat  for the gravitational field to 
the case o f  the Yang-Mills field. 

The approximate  radiative solutions o f  Einstein's equations are con- 
structed by using the W.K.B.  method.  This means that  given a system of  
partial differential equations, 

LA(fB) = 0 (1.1) 

with A, B . . . . .  1, 2 . . . . .  N, on the n-dimensional differentiable manifold 
Vn, X e Vn, we search for the solutionsfB of  the form 

fB(x, coop) = ~ CO-P~B(X, 09(p) (1.2) 
p=O 
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Here q~ is a scalar function on V, called the phase, and o9 a parameter 
which is chosen to be great enough to ensure the asymptotic validity of 
the series (1.2). 

Then equation (1.1) can be expanded into a formal series 

LA(fB)---- ~ og-PFa(x, ogq~) (1.3) 
p~--m 

As has been pointed out by Garding et al. (1964), we note that theformal  
series (1.2) is an asymptotic wave for the system (1.1) if 

q 

FA(x, 4) = 0 (1.4) 

for any x and 4, r being a real parameter. 
The finite sum 

fA(x, o9~o) = ~ og-PfA(x, ogtp) (1.5) 
p~O 

will be called an approximate wave of the order r in the domain ~? = V, if 
for any x E f~ and any value of q) 

ILa(fB)[ <. Mo) -r (1.6) 

for some suitably chosen constant M. 
Applying this method to the Einstein equations in vacuo, by expanding 

the metric tensor into series 

o 1 1 1 2 
gu(x, oxp) = giy(X) + ~ogu(x, ~qg) + -~g~j(x, coq~) + ' "  (1.7) 

with i , j  . . . . .  0, 1, 2, 3, and then expanding the Ricci tensor as 

- - I  0 1 1 

R~ = ogRij + Ru + ~ Ru + " " " (1.8) 

one obtains a lot of useful information about the approximate waves of  
- 1  

order 0, i.e. for the case R~ = 0, R u finite; of order 1, i.e. for the case 
- 1  0 
Ru = 0 and R u = 0, Ru finite, and so on for higher orders. 

Now, the same method can be applied to the Yang-Mills field equations. 
We recall here that these field equations can be derived exactly in the same 
way as the Einstein equations by constructing a special metric over the 
principal fibre bundle P(V4, G). Here the base of the fibre bundle V, is any 
four-dimensional Riemannian manifold with the usual space-time structure 
and the metric gu; G is a semi-simple and compact Lie group, called the 
gauge group. G is isomorphic to the fibre in P(V4,G). Next we introduce 
the connection form in P(V4, G), which in local coordinates can be written 
as A,a(x), with a, b , . . .  = 1, 2 . . . . .  K, K =  dimG, and e, fl . . . . .  1, 2 . . . . .  
K + 4. We can always choose such a coordinate system in any neighbour- 
hood in P(V4, G), in which Ab" = 6b", and the only non-trivial components 
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of A~" are A~"(x). The corresponding curvature form can be written then 
in local coordinates as 

r',~ A b~ ~ (1.9) F~aa �9 = 0i AJ a - OJ A~ ~ + "-'~c ~ "~j 

where C~ are the structure constants of  the group G. We also introduce an 
invariant metric structure on G by putting 

c d g~b = C,d Cob (1.10) 

Finally, we construct the following metric on P (V4, G) from g~,  gab and A~": 

A ~ A  b , b 
(g,~ + g.~ , i I g . b A j  ~ (1.11a) 

whose inverse is 
[.__g_~j____, ~tg a b \ 

' - ~  ~ J  / ( 1 . 1 1 b )  7 ~p = k_gi~ A t .  Jl--Jg-L-~i)-5-Z'A--bt6 - - 6  ~ , ~ j /  

e, f l = l , 2  . . . .  , K + 4 .  
We now construct the curvature scalar R for our K +  4 dimensional 

fibre bundle from ~a  and use it as the Lagrangian density for the variational 
principle, to obtain the Yang-Mills field equations from 

(R . ,  - �89 R)3~'~  = o (1.12) 

R~B being the Ricci tensor corresponding to the metric W~- 
The variations 57 ~ are not completely arbitrary, because the metric 

(1.11) has to preserve its particular form, so that we are varying only the 
g~g and A~ ~, and (1.12) gives us indeed two systems of equations: one of the 
form 

Ak a Rab -- Rag = 0 (1.13a) 

corresponding to the variations of  the A~a; the other, corresponding to the 
variations of  the gij, is of  the form 

R j k -  1 = : g ~ k R - A j " R a k  0 (1.13b) 

and can be regarded as a definition of the energy-momentum tensor for 
the Yang-Mills field. 

We should also remark that in our case the Riemannian scalar R = 7"aR,a 
is not null in general. 

In the case of the Minkowskian space-time, which we shall investigate 
from now on, the variations 3g ~J vanish identically and we are left with 
one system of  equations only, viz. 

Ak" R,b -- Rbk = 0 (I. 13a) 

which can also be written explicitly as 

~: ~ C ~ ~bi r~  ~ 0  (1.14) Fi j  + - bc . . . .  ij 
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2. Waves o f  Zeroth Order 

Accordingly to what was stated above, we shall call waves of  order 0 
the solutions of  the equations 

o - i  - I  

A~aR~b - Rb~ = 0 (2.1) 

Developing the potential Asa(x, mqO into a series of the form (1.2) and 
keeping only terms up to the second order in co- ~, i.e. assuming the potential 
to be 

mj a~ ~ja(x) "~- ~ Aja(x, ooq)) -~ -~ ~ja(x, (_O~O) (2~  

and then putting this expression into the formulae (1.1 la) and (1.1 lb), we 
P 

obtain the following matrices for y,#: 
/ o o l o \ 

Y,# \ g~bA~ '~ ] g,b ] 

[g..(a:d? +A:A:) [ g"-~O~-[) 
" = t   oo5: - 

2 ga~(A~ a A s  ~ + A l  a A j  b + ~ ~ j  : 
y~# = ' ~ - (2.3a) 

and 

. . . . . . . .  -0- 0 
Y~a---\_gfSAsa ] g~b +g~S As a Ash ] 

1 O1 -g~JA/'  _ 

7c'# = ~s Al a g~S(At a As b + A a Ajb)] 

~ ett --g~J A J b 

~,~J/A a .~ b A a A b 2Al Ash)] 
-1 
R~ 0 is calculated to be 

- - i  0 1 1 1 i 
,v # 

R,~ = �89 ~n B + y~aen,)n~ - v~en, n# - 7~n,  no} (2.4) 
where 

, O 2 y,~(x, ~) (2.5) 

The compactness of the gauge group leads us to the most  natural assump- 
tion Odp = n~ = 0, i.e. n~ = 0 for e -- 1 . . . .  , K. Then one easily sees that the 
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- i  - 1  

components R.b of R~# vanish identically, so that finally we have to solve 
the system 

--1 

R , k = 0  (2.6) 
o 

The case when ?~an, n~ # 0 gives immediately the solution 
1 

" 0 /'/~ 7~a= , ,+O~n,, 
that is 

l 1 1 
/t tf 

Yah = O, 7aJ = ga~ A'5 ~ = Oa(X, co9) nj 
and 

(2.7) 

(2.7a) 

(2.7b) 

from which follows 
i 

Aj"(x ,  co(p) n j = 0 (2.13a) 

As the characteristics of n~ = 0~ r are the null vectors with respect to the 
metric gU, condition (2.13) means that in the first approximation the first- 
order correction to the potential, i.e. the asymptotic wave of order 0, 

1 0 1 0 i 

~'6 = g.b(-4, a A"~ + &b A;") = O~ nj + Oj n, 

where 0, is an arbitrary vector field on P ( M , ,  G). o 
The non-trivial case occurs, however, when ?'~n~na -- 0, which is 

equivalent to gUn~ nj = 0 because of n, = 0. 
Then we have 

--1 0 i 1 1 

RuB = ~71 ~(~npn~,, + ?~n~n~" -- ?,~n~n~)" = 0 (2.8) 

which in turn can be written as 
--1 

1 / t H  R,a = --zt  n, ~Pa +np qS~) = 0 (2.9) 
where 

0 1 1 

~ .  = �89 n~ - ~.~ n,)  (2.10) 

Equations (2.9) are equivalent to 
~ ; = 0  (2.11) 

When taken into account with the conditions of regularity on 7,~, i.e. 
the requirement that 7,a should be always finite, this gives 

~,  = 0 (2.12) 

One easily verifies that the components ~, vanish identically, and we are 
left with the following equation only: 

1 1 0 1 1 
~b. = �89 u n .  - ?aj n~) --  �89 Aj~(?~b n.  --  ~ab n3  

0 0 1 1 
+ �89 gU A I  A j~) (~b n~ - ~'~b n~) 

1 1 

-- ---x ~'u "'raj n i = --A jb ( X, COq~ ) g,  b n i (2.13) 
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I 

As~(x, co@) must  be or thogonal  to the null-vector n~, giving the direction 
of  the p ropaga t ion  of  the asymptot ic  wave. 

We also note that  n~ is a characteristic vector  for  bo th  the first and the 
second approximat ion ,  because in every case 

1 2 

7 u = 0 and ? u" = 0 (2.14) 

3. Radiative Coordinates and Gauge 

It  is always possible to make  locally the following choice of  coordinates:  

x ~ = q~(x), x" being the same for  cr # 0. (3.1) 

In  these coordinates we have the following obvious relations: 

no = 1, n~ = 0 for  ~ # 0 
also 

0 0 

?oo = O, n o = 0 and n ~ = ? ~~ for  cr # 0 (3.2) 

We see then that  in these coordinates equat ion (2.5) takes on a par-  
ticularly simple form:  

--1 

R ~  = 0 for  ~,/~ # 0 (3.3a) 

--1 1 

Ro, =-�89 ~ ?~p = 0 for  e #- 0 (3.3b) 
and 

--I 10aB 1 n 

Roo ~ - ~ ?  ? ~  = u (3.3c) 

N o w  we remark  upon  the following proper ty  of  the metric (1.11a), 
(1.1 lb) :  if  we write down the harmonici ty  condit ions 

F ~ = 0 (3.4) 
where 

1 
F ~ = ~/_~; ~ , ( V ( - ~ )  ?~) (3.5) 

then, recalling that  in our  case [?[ = ]det?~a[ = Idetgul = 1, we have just  

F ~ = 0~ ?~" (3.6) 

Calculating this expression explicitly gives us 

~a?~a = 0~ ?~i + 0~ ~,~b (3.7) 

N o w  we choose the geodesic coordinates in the group manifold G, so that  
b b c OaA~ + CacA~ = 0 (3.8) 

(The structure constants Cgc play the role of  the connection coefficients 
in G.) Having  this in mind we can proceed further and obtain for  ~ = j  

O~ gU + Ob ?b.i = _gU Ob At, = gU C~ c A c - 0 (3.9) 
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because C~  = 0 for any semi-simple and compact Lie group. For  e = a 
we get 

O~ ~a = O~ 7 "~ + Ob(g "b + gU Ai~ AjO) 
: __gij Oi Aja + gU C~ Ai a Aj c + gij C~ e A b A f  

= - 0  J A~" (3.10) 

So the harmonicity conditions for the metric 7,~ are equivalent to the 
requirement of  the radiative (Lorentz) gauge for the potential A~.", i.e. 

0IAj" = 0 (3.11) 

Further, expanding the harmonicity conditions for the metric (2.3a), 
(2.3b) into a series in the powers of  co -~, one can easily see that 

o 1 1 
F ~ = F  " + - F  ~+ . . .  (3.12) 

(.O 

where 
0 O 

F = F=(7a,) + q5 ~ (3.13) 
- 1  

The fact that Rb~ = 0 implies ~b = = 0 means then that in the zeroth approxi- 
mation the gauge condition OJAj" = 0 will be conserved. It  is also obvious 
that the Lorentz gauge is the only one having this property. 

Radiative coordinates are particularly useful in simplifying the equations 
for the first-order asymptotic wave, which we shall see in the next 
section. 

4. Equations for the Waves of  the First Order 

Developing equations (1.13a) in the powers of  co, we see that the only 
terms with the zeroth power are 

0 0 I - i  

Ak"R,,b - Rbk + AkaRab = 0 (4.1) 

We also have to satisfy the conditions for the zeroth order; therefore we 
are left with the following system: 

- - I  0 0 0 

Rbk = 0 and Ak ~ R~b -- Rbk = 0 (4.2) 
--1 

because, as we have seen before, R,b vanish identically. 
0 

Direct calculation gives us the following expression for R,  B: 
0 I I 0 0 0 0 0 0 

r~ r ,  r~  r~ (4.3) 

Recalling that n'n,  = 0, we can write explicitly (all barred quantities 
0 

correspond to the non-perturbed metric V,a): 
0 O 2 2 2 

R~a = � 8 9  ~ + 7~n~n~ - ,;~n~nB) + ~C~ (4.4) 
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"~ao = Ia, + IIa, + Ilia, + IVan + V.n (4.5) 

1 1 1 1 
l a  . 2 "l~ t, n ,, = z? (?a6n, n~ + ?n~nan~ - yr~na n,) (4.6a) 

1 0 I 1 

I~, = - n  ~ a~ ~.~, + ~,~(~ ~,~ n, + a. ~.'p~ n.) 
0 1 1 1 1 

- � 8 9  ~,~ nn + O. ~ .~  n~) + ~ ~ ' ' ' ~n (Oay~, + O,?~) (4.6b) 
1 1 1 1 1 

t r I l l . ,  = ~-~,'~{(?.'~ n, + ~.;~ n.) n~ - ?~  na n, - ~ . ,  n~ n~)} 
0 1 1 1 0 0 1 1 I 

t 

1 1 1 

x (y'~n, + ?'~r -- y'~vn~) (4.6c) 
1 0 

= ?~a{~? ( F , .  n~ + 
0 1 1 0 0 

- �89 ~,'~ va n, + �89 v~ na + nr r ~  - ~.~ r .~  n.) 
1 0 0 

- . ~  . , ,~w . ~ ~"" V~n ~ (4.6d) + �89 ~ V~ n .  + . . . , r  - ~ . .~ . . ,~  - ~ . ,  

V., = R,.  (4.6e) 

The last term will fall out from the equations, because the non-perturbed 
2 

Ricci tensor verifies equation (1.13a). Equations (4.2) are linear in ?~n; but 
non-homogeneous. The homogeneous term, which is identical to the left- 

1 2 

hand side of (2.1), except for the ?~ being replaced by V",, is not inde- 
pendent; therefore, in order to be satisfied, equations (4.2) reduce themselves 
to 

0 

A~" G.0 - G ~  = 0 (4.7) 

where Ga, = I . ,  + II.n +II Ia ,  + 1V~,. Moreover. as can be easily seen. 

these equations do not contain the ?~, and are therefore of the first order. 
Before proceeding further we shall give the explicit expressions for the 

non-perturbed connection coefficients of our metric: 
0 

~5 ,Sab J- fl; 
o o 0 

F~.a = g~ g~  Ak a F~j + C~% A f 
0 0 0 0 0 0 0 

--i  __ 1 I ' j ~  - -  ~ ( O j  AI~ a + Ot~ A ~  a)  - ;rn ~ A a ~tn a b c a b c u ~  m + g  g~(Am A~ F u + A , .  Aj  F~)  
0 0 0 0 

r L  = im b c + g  g~(A~, F~m +A:~F~,m) (4.8) 

where {~.~} are the Christoffel symbols corresponding to the space-time 
metric gu; they are of course null in the case of the Minkowskian space-time 
which we are now investigating. 
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The  equat ions obtained after  put t ing (4.8) into (4.2) are quite cumber-  
some, therefore we shall pass to the radiative coordinates.  In  these co- 

o 
ordinates the expression for  the R,  B is simplified to 

0 1 i 1 1 1 1 1 
R ~  - n  ~ 0~ 7'~ + • ~ ' , �89 , 1 _ ~ o . ,  o,, = zn (O~ Y~a + 08 7~) - ?~t~ + ~ . . . .  ray y~o 

1 1 0 I 1 
'- ~' ~ ' ~ p 6  ~,' 1tO ~,Y~,' -- - �89 ~V,n -. ~ + ~.~ y~ - �89176 

0 1 0 1 
1to ~,~,, •  .,~o~,, •  (4.9) 

(We use here the indices a, fl, but  recall that  in the radiative coordinates  
o 

(4.2) is a non-trivial  equat ion only for  a, fl # 0, Roo being null identically.) 
Using the conditions of  zeroth order  we can simplify expression (4.9) even 
further:  

0 1 1 

0•  ff  " ' V  ~" 1 ' ~rnr + ~ a  (4.10) 
where 

1 1 1 0 
-- ' , ~6 ' ~ ' 

V~ ?~a = 0~ 7~ - ~ ~ - ~ ?~  (4.11) 

Note  that  in (4.11) we sum only over e,/3 # 0, excluding any case when an 
index o f  any connexion coefficient takes on the value 0. 

Putt ing in the explicit fo rm of  the connect ion coefficients and the com- 
ponents  of  the metric  yields, after the s t raightforward calculus, the following 
system: 

1 0 O O 0 1 1 

n ~ 0 ~ A ~ ' - n  ~ jt ~ a a . ~ c' g [ga~FuA~ + g ,  aFuA~ 3c]A,~ +(O~n~)A~ " = 0  (4.12) 

(we remind once more  that  (4.12) is valid only in the radiative coordinates,  
the general expression being more  complex).  

Now,  the impor tan t  result is that  in spite o f  high non-lineari ty of  the 

original system we have finally obtained a linear system for  A~', which can 
be also writ ten symbolically as 

1 1 

n ~ 0~ A~' + ~ I~ a~" - n (4.13) ~ck.  Zaj  - -  v 

where the matr ix  U~]~ is given by 
0 0 0 0 

U ~ =  , .n ~ ~' '~ " ~ (0,n ')  (4.14) - n g  [ g , ~ F u A  ~ + g ,  a F u A ~  0 c ] + 6~6~ ~ 

Moreover ,  as one can easily verify, the system (4.13) is always homo-  
geneous, even in non-radiat ive coordinates.  This is the first serious 
difference between the Yang-Mil ls  field case and the gravitat ional  field 
studied by Mine Choque t -Bruha t  (1964). 

In t roducing d/ds = d(O/Ox ~) we can write (4.13) as 

' + U A '  = 0 (4.15) 

I f  we introduce now a space-like surface (i.e. transverse to n ~) S with a 
local parametr i sa t ion  y, then we can put  (at least locally) x = x(s ,y)  with 
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x(O,y)  = y. Then the general solution of (4.15) can be put in the following 
form: 

1 

A'(s ,  y;  ~) = T(s,  y )  O(y, ~) (4.16) 
1 1 

where O(y, ~) stays for A'(0,y; ~), the initial value of A' on the surface S, 
and T is an operator written symbolically as 

Notice that notation (4.17) is generally purely symbolic; only in the case 
when the matrix kl commutes with its derivative with respect to s, the 
exponential turns out to be just the classical series as for the numbers. 
However, much can be said about the asymptotic solution just by consider- 
ing the norm of the operator (4.17); obviously bounded solutions do not 
exist if the operator (4.17) is not a bounded one. 

The result in (4.16) should be expressed in x = x(s ,y )  and ~ = cop(x) only. 
If we want the solution A' (x ,  4) to be finite for any value of x and 4, then the 
operator (4.17) must have the same properties. 

Before proceeding further into the investigation of some examples we 
draw attention to the interpretation of the conditions of order 0, i.e. 

1 
n i Ai b = 0 (2.13a) 

as the initial conditions for the system (4.12). Multiplying it by n k we obtain 
1 1 

n k n i 0i A~' + n k Iv ~J ac" = 0 (4.18) ~'J ck ~xj  

or, because of the obvious relation, 

n ~ O~ n k =(d/ds) n g = 0 (4.19) 

d ~ 1 
- -  k b" H k  b J  C a __  ds (n A)~ + I_l ck A j  - 0 (4.20) 

This in turn can be regarded as a system of ordinary differential equations 
1 

for the quantities nkA~, ' if the following relation holds: 

n k II ~k--b~ _ Web n s (4.21) 

where W~ b is an arbitrary non-singular matrix. 
This is possible if and only if 

n k n ~  U bj  _ 0 (4.22) 
�9 o k - -  

In the radiative coordinates and in the Minkowskian space-time the 
condition (4.22) reduces just to 

[_l ~o ~ = 0 (4.23) 

In such a case the system (4.20) is equivalent to a system of ordinary 
1 

differential equations (homogeneous) for the quantities nkA~ ", and if the 
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1 

condition nkA~ ' = 0 holds on a hypersurface transverse to n k, then it holds 
everywhere in the space-time. 

Since we impose the regularity conditions on the functions Akb(x, ~), the 
1 

same will be true for the expression n~A~ b. 
Now we are ready to proceed with some specific examples. 

5. Radiat ive  Perturbations o f  S o m e  Trivial Exac t  Solutions 

Let us now apply this formalism to some known exact solutions of  the 
Yang-Mills field equations. We begin by the most trivial case, when 

0 

A b = QbA~(x), Qb being a constant vector in the Lie algebra of  the gauge 
group G. Then all the solutions verify the Maxwell equations in vaeuo, but 
do not obey the superposition principle. 

Let us suppose that the non-perturbed potential describes a plane wave 
in the direction of the x-axis: 

0 0 
At b = Qb AI(x) ,  

0 0 0 
At = 0, Ax = 0, Ay = sin ( k x  - ogt), 

(5.1) 
0 

A ~ = c o s ( k x - o g t )  

(5.2) 
0 

I t  is obvious that there exists a solution for Ai just proportional to A,, 
because for such solutions the superposition principle holds (of. Kerner,  
1971). Let us verify then if an asymptotic plane wave solution exists along 
any other axis which, by a linear transformation, can be chosen as y-axis. 
So, without loss in generality, we suppose 

(p = kl Y - o91 t, with kl 2 c 2 = o912 (5.3) 

Next, introduce the radiative coordinates: 

x ~ = q~ = kl y - o91 t = u 

s = kl y + o91 t, 

and x,  z the same as before. Then 

n u =  1, n ~ = n x  = nz = 0  

n S = - 2 0 ) 1 2  , n u = n  x = n z = 0  

gU~ = _2o912, g~, = gU. = 0 (5.4) 
We have also 

o ,) 
A, = As = ~ sin k x  - s - u 

o o ( 
Ax = 0, Az = cos k x  - u) (5.5) 



2 7 4  RICHARD KERNER 

The matrix I1~ takes on the following form: 

1 o o 

2col 2 i lbc~ = (Oh a~ _ aa Oa6cb)gSmFsmAk (5.6) 

In order to simplify the system (4.12) we have to diagonalise first the matrix 
(Q~ Q c -  Q" Qa6f ) ;  this can always be done because of its obvious sym- 

1 
metry. Then we obtain the following system for the quantities A[: (the 
prime means derivative with respect to 4): 

dl 1, 
2[ k 2s in2a  co �9 2 , ]  + 2coj |4-~, 2 cos A~ + _ _ _  s m  = o 

d J ,  0 d l "  2 I-k 2 1, co t ] 
d s " ~  ~ A2 _ _  + 2-~i --- +2col [2--~-cos 2A~ sin2cos2A~ = 0  

d ~, coco1 . 1, k 1 
A, -- 2col 2 ~ cos 2 sm 2 A~ + 2co~ 2 ~ cos ,~ sin 2 A~ 

co �9 2 1 
+ ~ s l n  2 A ; = 0  

with 
o) 

2 = k x  - ~ (s - u) (5.7) 
1 1 

Eliminating A~ and A~ from these equations by virtue of the necessary 
(2.13) relation n~A~ -- 0 will give us finally 

d , 
= 0 ( 5 . 8 )  

i.e. the solution constant along the rays. The complete solution is of the 
form PbA~, where pb is an eigenvector of the matrix 

(Oh Qc - aa Qa 6b) (5.8a) 

As our next example we shall take the following potential: 

o 000] At = (5.9) 

where 
t. 2 = X 2 _]_y2 + 22 (5.10) 

Let us first look at the spherical asymptotic wave: we take 

u = r = kr  - cot, with c 2 k 2 = co2 

s = kr + cot (5.11) 

and the angles 0, q~ unchanged. In these coordinates we have 

o 1 1 
A~ = [ - 2 - - ~  + u) , ~ ( s  + ~ , O , O  ] (5.12) 
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and the only non-vanishing component of Ftj is 

o 2k 
Fus (s + u) 2 (5.13) 

The only non-vanishing components of the matrix" klc~bj are 

~ s _  " v 8 c o 2 k 2  b 1 
- I I c " - I I ~ = ( Q b Q c - Q a Q " ~  +6c ( s+u)  (5.14) 

1 

As before, from the zero-order condition we have Aj = 0, so that finally 
we obtain the following set of equations (after diagonalising the matrix 
(5.8a)): 

1 i, 
= o (5 .15 )  

and the solutions are the usual spherical waves. 
As a third example we take an asymptotic plane wave with a static 

potential Q"/r as a background. We put 

u = cp = kx  - cot, s = kx  + cot 

y, z the same then we get 

and the non-vanishing components of the tensor F u are 

2k y 
F,~ = ~rqr 2 , F, .  = -F ,s  = cor 3 

Z 
F~ u = - F , ,  = (5.17) 

(.Or 3 

with 
r 2 = (s + u) 2 

4k 2 + y 2  + Z 2 

Then we get the following equations for A~ (after diagonalisation of the 
matrix (5.8)): 

d . * ,  d 1, d a, 
~ s A , = 0  ~ A y = ~ A  z = 0  

2 , 
~ A s  4wars y 4co2rsA~=O (5.17) 

1 1 

Because ofniA~ = 0 we get A~ = 0. 
The solution again is a plane wave with the subsidiary condition 

at 1 

yA~ + zA~ = 0 (5.18) 

All the aforementioned cases verify, of course, the condition (4.22). 
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6. Conclusion 

The few examples we have considered above give us very restrictive 
results: the only possible asymptotic solutions which can be superposed 
with the trivial background field by means of the W.K.B. technique are 
themselves trivial; there is almost no trace of  the interaction of the Yang- 
Mills field with itself. There are two main reasons for this. First, we have 
looked only upon the trivial background; second, that we were developing 
the asymptotic wave with the parameter co -~, which means that the energy 
of the asymptotic wave is of  the same order as the energy of the background 
field. The results are thus comparable to the solutions obtained by just 
considering the possibilities of superposition of the factorisable solutions of  
the electro-magnetic type (of. Kerner, 1971). Different and more interesting 
results can be obtained by modifying the W.K.B. method and assuming 
that the energy of the asymptotic wave is very small as compared to 
the energy of the background field, and using the ratio of  the two energies 
as a parameter in the development. 

These results will be given in our next paper. 
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