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Abstract

In this paper we look for the asymptotic radiative solutions of the Yang-Mills field
equations. Considering the potential of the Yang-Mills field as a connection in a principal
fibre bundle gives us a fully covariant formalism similar to the formalism of the General
Relativity. Then we apply directly the results obtained by Mme Choquet-Bruhat for the
gravitational field by means of the W.K.B. method. After deriving the equations for the
asymptotic waves and interpreting the zero-order conditions as the initial conditions, we
consider some known trivial solutions of the Yang-Mills ficld equations as the ‘back-
ground field’ and construct the asymptotic waves explicitly. All the solutions considered
turn out to be of the electromagnetic type, with some extra restrictions of the algebraic

type.

1. Introduction

This paper is basically a generalisation of the work done by Mme
Choquet-Bruhat (1964) on the approximate radiative solutions of
Einstein’s equations. By using the fact that the Yang-Mills field theory can
be constructed in a purely geometrical way as a special case of the
Riemannian fibre bundle (Kerner, 1968), we can apply directly almost all
the results obtained by Mme Choquet-Bruhat for the gravitational field to
the case of the Yang-Mills field.

The approximate radiative solutions of FEinstein’s equations are con-
structed by using the W.K.B. method. This means that given a system of
partial differential equations,

Ly(fz)=0 1.1)
with 4, B,...=1,2, ..., N, on the n-dimensional differentiable manifold
V,, x € V,, we search for the solutions f3 of the form

© P
So(x, 0p) = Zo 7 fg(x, 0Q) (1.2)
p=
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Here ¢ is a scalar function on ¥, called the phase, and w a parameter
which is chosen to be great enough to ensure the asymptotic validity of
the series (1.2).

Then equation (1.1) can be expanded into a formal series

Lif= 3 o7 Fix,00) a3

As has been pointed out by Garding et al. (1964), we note that the formal
series (1.2) is an asymptotic wave for the system (1.1) if

F(x,&)=0 (1.4)

for any x and &, ¢ being a real parameter.
The finite sum

fix00) = 3 o77f (x,00) (19

will be called an approximate wave of the order # in the domain Q < V,, if
for any x € Q and any value of ¢

ILa(f8)] < Mo>™ (1.6)
for some suitably chosen constant M.

Applying this method to the Einstein equations in vacuo, by expanding
the metric tensor into series

0 11 12
g:15(x, 0@) = g;,(x) + agij(xs we) + a)—igij(xa we)+ - a.mn
with i, j,...=0, 1, 2, 3, and then expanding the Ricci tensor as
-1 4] 1 1
Rij:wRij+Rij+E)Rij+... (1.8)

one obtains a lot of useful information about the approximate waves of
~1
order 0, i.e. for the case R;; =0, R;; finite; of order 1, ie. for the case

-1 0
R;;=0and R;; =0, R, finite, and so on for higher orders.

Now, the same method can be applied to the Yang-Mills field equations.
We recall here that these field equations can be derived exactly in the same
way as the Einstein equations by constructing a special metric over the
principal fibre bundle P(V,, ). Here the base of the fibre bundle ¥, is any
four-dimensional Riemannian manifold with the usual space-time structure
and the metric g;;; G is a semi-simple and compact Lie group, called the
gauge group. G is isomorphic to the fibre in P(V,,G). Next we introduce
the connection form in P(V,, G), which in local coordinates can be written
as 4,4x), witha, b,...=1,2,..., K, K=dimG,and o, f,...=1,2,. .,
K + 4. We can always choose such a coordinate system in any neighbour-
hood in P(V,,G), in which 4,* = ,%, and the only non-trivial components
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of 4, are 4;%(x). The corresponding curvature form can be written then
in local coordinates as

Fl;=0,A4—0;4,"+ C{, 4> Af 1.9

where CZ, are the structure constants of the group G. We also introduce an
invariant metric structure on G by puiting

g =Coy Cgb (1.10)

Finally, we construct the following metric on P(¥V,, G) from g;;, g,, and 4%

i A4 | b
Yap = (&‘J‘i—égsa‘ﬁl‘“J‘"g"g'a";'[‘:i') (1.11a)
a i a
whose inverse is
g7 1 —gYAp
LY (S S, E———- o
b (_guA a ;l gab _'_gu AiaAjb (lllb)

wf=1,2...,K+4

We now construct the curvature scalar R for our K + 4 dimensional
fibre bundle from y,; and use it as the Lagrangian density for the variational
principle, to obtain the Yang-Mills field equations from

(Rap — 376 R) 8y = 0 (1.12)

R, being the Ricci tensor corresponding to the metric y,,.

The variations §y*¥ are not completely arbitrary, because the metric
(1.11) has to preserve its particular form, so that we are varying only the
g% and 4, and (1.12) gives us indeed two systems of equations: one of the
form

Aka Rab - Rbk = 0 (1 133.)

corresponding to the variations of the 4,%; the other, corresponding to the
variations of the g¥/, is of the form

Ry—%1guR— ARy =0 (1.13b)

and can be regarded as a definition of the energy-momentum tensor for
the Yang-Mills field.

We should also remark that in our case the Riemannian scalar R = y* R,
is not null in general.

In the case of the Minkowskian space-time, which we shall investigate
from now on, the variations dg*/ vanish identically and we are left with
one system of equations only, viz.

A Rep — Ry =0 (1.13a)
which can also be written explicitly as

O Fe+ CL A FE =0 (1.14)
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2. Waves of Zeroth Order

Accordingly to what was stated above, we shall call waves of order 0

the solutions of the equations
0 -1 -1
A Ry — Ry =0 (2-1)

Developing the potential A /%(x,w¢) into a series of the form (1.2) and
keeping only terms up to the second order in 0™, i.e. assuming the potential
to be

0 ] 1 ] 2
Af = A7) + S AS(x, 00) +— 4,(x, 09) 2.2)

and then putting this expression into the formulae (1.11a) and (1.11b), we

D
obtain the following matrices for y,,:

0 1 1 0 [ 1
: (gab(Ai“A,-"+Ai“A,,a) | g,,,,A,-b)
af T

= 1
gabAia ! 0

Jedpsdedriadeap) | gudy

2 . TAP L A%A4L0 4 24 w A

'Yaﬁ= gb(i J 121 i J) 8ap j (233,)
S Ai° 0

and

1
;)’aﬂ — g Y l —£ H Ajb
= 0 0 O
_.gij Aj“ gab + gij Ala Ajb
;’aﬂ = ) 01
__glj Aia

2

2 0 —gli g}

P = 2 | 02 p) g 11 (2.3b)
—gH AL | gHASAL + APAL 4247 A5

1
._gi.i Ajb
1 i
g AL AP+ 4240

-1
R, is calculated to be

-1 o 1 1 1 1
Rap =397 wanp + V55 12) My = VysMaTlg — Yaghy Mo} 2.9
where

1
1 2
ne=0¢ and  y= 8____752(26 :)

The compactness of the gauge group leads us to the most natural assump-
tion 8, =n,=0,ie.n,=0fora=1,..., K. Then one easily sees that the

@.5)

=00
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~1 -1
components Ry, of R,; vanish identically, so that finally we have to solve

the system
-1

Ru=0 2.6)
0
The case when y*#n,n, # 0 gives immediately the solution
1
Vap = a115 + Oy 1, @27
that is
1 ” 1 ” 1//
Vap = Oa Yaj = gav Ajb = a(x: CU(P) n; (273)
and
1 o] 1” (o] 1”
Vi = Ea( AP AT+ AL A7) = 0ymy + O (2.7v)

where 0, is an arbitrary vector field on P(M,,G).

The non-trivial case occurs, however, when y*n,m; =0, which is
equivalent to g/n;n; = 0 because of n, = 0.

Then we have

o 1 1 1
R.s = 57"(s Mgty -+ Vi TaTly — YysHaig) =0 23)

which in turn can be written as
-1

Rop =—(nabp+ 15 $5) =0 2.9)
where
o 1 1
¢a = %yw(y‘y& Hy — Yas nv) (2' 10)
Equations (2.9) are equivalent to
¢r=0 (2.11)

When taken into account with the conditions of regularity on p,,, i.e.
the requirement that y,, should be always finite, this gives

$.=0 (2.12)
One easily verifies that the components ¢, vanish identically, and we are
left with the following equation only:
1 1 01 1
Pa =387 (1510 — Vas 1) — 387 AL Giv B0 — Yap 1)
0 0 1 1
+ %(ng glj A.ic A.ib) ('ch Hy— Yap nc)
1 1
= —58" Yoy = —A(x, 0) gup 1! (2.13)
from which follows
1
Af(x,00)n' =0 (2.13a)

As the characteristics of n; = 9, ¢ are the null vectors with respect to the
metric g¥, condition (2.13) means that in the first approximation the first-
order correction to the potential, i.e. the asymptotic wave of order 0,
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1
Af(x,c0¢0) must be orthogonal to the null-vector n;, giving the direction
of the propagation of the asymptotic wave.
We also note that »; is a characteristic vector for both the first and the
second approximation, because in every case

1 2
P9 =0 and ¥ =0 (2.149)

3. Radiative Coordinates and Gauge
It is always possible to make locally the following choice of coordinates:
x% = ¢(x), x* being the same for « # 0. 3.1
In these coordinates we have the following obvious relations:

np=1, n,=0 fora#0
also

0 [¢]
p¢ =0, =0 and w*=yC fora#0 (3.2)

We see then that in these coordinates equation (2.6) takes on a par-

ticularly simple form:
-1

Ry;=0 fora,f#0 (3.3a)
-1 1
Ryy=3nfy=0  fora#0 (3.3b)
and
~1 10 1”
Ry = ——Ey“ﬂ Yog =0 (3.3¢)

Now we remark upon the following property of the metric (1.11a),
(1.11b): if we write down the harmonicity conditions

F*=0 (3.4

where
P = 0 D7) (.5)
then, recalling that in our case |y = |dety,;| = |detg;;] = 1, we have just
F? = gy y* (3.6)

Calculating this expression explicitly gives us

0gy™ = 0y y* + 0y y™® (3.7
Now we choose the geodesic coordinates in the group manifold G, so that
0, 42+ Cb,A°=0 (3.8)

(The structure constants C#, play the role of the connection coefficients
in G.) Having this in mind we can proceed further and obtain for ¢ =j

0,8 + 0y =—gH0, AP =g Ch A°=0 (3.9
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because C2.=0 for any semi-simple and compact Lie group. For a=a
we get
Op v = 0,y + 0,(g™ + g% 4,°4)")
=80, A+ gV Ch AP Af + 87 Ch AP Af
=01 Af 3.10)
So the harmonicity conditions for the metric y,, are equivalent to the
requirement of the radiative (Lorentz) gauge for the potential A7, i.e.

FAF=0 G.11)

Further, expanding the harmonicity conditions for the metric (2.3a),
(2.3b) into a series in the powers of @™, one can easily see that

0 1 1
F“=F“+6F“+--' (3.12)
where
] 0
F=F*(y;,) + ¢* (3.13)

-1
The fact that R,; = 0 implies ¢*= 0 means then that in the zeroth approxi-
mation the gauge condition 8/ 4;* = 0 will be conserved. It is also obvious
that the Lorentz gauge is the only one having this property.
Radiative coordinates are particularly useful in simplifying the equations
for the first-order asymptotic wave, which we shall see in the next
section.

4. Equations for the Waves of the First Order

Developing equations (1.13a) in the powers of w, we see that the only
terms with the zeroth power are
0 1 -1

o
Aka Rab - Rbk + Aka Rab =0 (4-1)

We also have to satisfy the conditions for the zeroth order; therefore we
are left with the following system:
[(I]

-1 [
Rbk = O aIld Aka Rab - Rbk = 0 (42)

-1
because, as we have seen before, R, vanish identically.

0
Direct calculation gives us the following expression for R,;:
0 1 1 (o] 0 (1] 0 0] 0
Raﬁ=rgﬁn5-rgéna+ aérgﬂ - 3aF§a+F§ﬁF?§r‘ Fgargv (4-3)
Recalling that »*n, =0, we can write explicitly (all barred quantities
4]

correspond to the non-perturbed metric y,5):

0 0 5 2” 2// 2//
Ra:ﬁ = %'yy (70:5 Rg ¥y + Vg Pa By — Vys nanﬁ) + %ail (44)
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where
Hg=Lg+ I+ g+ IV,5+ Vi (4.5)
with

1 1 1 1
Top = 3¥" (Vs T1p 11y + Vg Ma Ty = VyaMa Mp) (4.6a)
sa L o 1 1
Lg=—1"0;74p + 57"°(0y yas g + 0y Vps1a)
0 1 1 1 1
- %yw(aa 3’1’;«5 Mg + aﬁ Y;a na) + %nﬁ (aaz 'yéﬁ + aﬁ y:iu) (46b)
1 1 1 1 1
Ly =3y"{(Yasip + V55 1) Ty — V35T Mg — Vagty )}
o] 1, 1, 1, 05051' 1’ 1,
+ ZL-nv yén ’}’611('))37 Bot Vay nﬁ) - %’Yy 'Y" ('Yng Ry + Vas My ~ Van l’l,;)
1 1 1
X (Vycg + VarTty — Yoy Me) (4.6¢)
1 0 _ _ _
I VaB = 7;6{%?’5”([' Zu g + I 2,171 "tz) —n'r 2!’}
0o 1 _ 10 o _
— 39" 35 Vatty + 370" Vo iy + 0 Ty — ™ Tiemy)
10 _ o _ =
+ 370 Vyng + 0 Ty — v Tieng) — 3745 Von®  (4.6d)
V= Rap (4.6¢)
The last term will fall out from the equations, because the non-perturbed

2
Ricci tensor verifies equation (1.13a). Equations (4.2) are linear in y,,; but
non-homogeneous. The homogeneous term, which is identical to the left-

1 2
hand side of (2.1), except for the y,; being replaced by y,, is not inde-
pendent; therefore, in order to be satisfied, equations (4.2) reduce themselves
to

0
Aka Gab - Gbk = 0 (4.7)
where Gyp =I5+ I,z + III,; + 1V,,. Moreover, as can be easily seen,
1

these equations do not contain the y,, and are therefore of the first order.
Before proceeding further we shall give the explicit expressions for the
non-perturbed connection coefficients of our metric:

o
F;,‘c=0 Fgc=0 Flinjzglkgangk

_ ) o o o
by = 8% gpe A" Fij+ CopAf

. o 0 0 ) 0 0 0 0
Ia=30; 48 + 0 A — {5 An” + 8™ o Ap® AL F§y + A0 AL Fi

_ . _ 0o 0 o o

I = (i} + 8™ 8ol A F G +A,? Fii) 4.8)

where {4} are the Christoffel symbols corresponding to the space-time
metric g;;; they are of course null in the case of the Minkowskian space-time
which we are now investigating.
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The equations obtained after putting (4.8) into (4.2) are quite cumber-
some, therefore we shall pass to the radiative coordinates. In these co-

0
ordinates the expression for the R, is simplified to
V] 1’ 1, 1[ 1,0 1, 61’ 1,
thﬁ =—n’ av Yas - %nv(aa V8 + aﬁ yva) - %"}’ 0 Yep + %n'yn Y8y Yas

1 1, _ 0 1 _ 1,
— 3V agVy 1 — 1 Lop 35+ 3T Qs 7" vy — 001" V5y
_ 0 1 _ 0 1 _
— 3Ty Py + 35y 7™ Vs + Rag 4.9
{We use here the indices o, §, but recall that in the radiative coordinates

(]
(4.2) is a non-trivial equation only for ¢, f # 0, Ry being null identically.)
Using the conditions of zeroth order we can simplify expression (4.9) even
further:
0 4 _ 1 S _
Rp=—1"V,y05—3y28 Vo' + Ryp (4.10)
where
_ 1 1 1 __ 0
V. Vas =0y Vap— 355 — TapVas (4.11)
Note that in (4.11) we sum only over «, f§ # 0, excluding any case when an
index of any connexion coefficient takes on the value 0.
Putting in the explicit form of the connection coefficients and the com-

ponents of the metric yields, after the straightforward calculus, the following
system:

N o o o o o 1, 1,
n' o, A} _'nlgﬂ[gacF?lAka+gadF‘i11Aka5cb]A.ci + (0,74} =0 (4.12)

(we remind once more that (4.12) is valid only in the radiative coordinates,
the general expression being more complex).
Now, the important result is that in spite of high non-linearity of the

original system we have finally obtained a linear system for 4, which can
be also written symbolically as
1 1
nto, AY + LB A5 =0 (4.13)
where the matrix LI% is given by
[+ I ) 0 0
Ub = —n' g/ ga Fy A* + gaa F§ A* 071 + (0, 7) 6. 6, 4.14)

Moreover, as one can easily verify, the system (4.13) is always homo-
geneous, even in non-radiative coordinates. This is the first serious
difference between the Yang-Mills field case and the gravitational field
studied by Mme Choquet-Bruhat (1964).

Introducing dfds = n'(9/0x") we can write (4.13) as

d‘zl 1/
A +UA =0 (4.15)

If we introduce now a space-like surface (i.e. transverse to n') S with a
local parametrisation y, then we can put (at least locally) x = x(s,y) with
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x(0,y) = y. Then the general solution of (4.15) can be put in the following
form:

A(s,y:8) = T(5,) 60, 9) @.16)

1 1
where 6(y, ) stays for 4°(0,y;&), the initial value of 4" on the surface S,
and 7 is an operator written symbolically as

T(s,y) = exp [— f U (e,y) da] 4.17
0

Notice that notation (4.17) is generally purely symbolic; only in the case
when the matrix L1 commutes with its derivative with respect to s, the
exponential turns out to be just the classical series as for the numbers.
However, much can be said about the asymptotic solution just by consider-
ing the norm of the operator (4.17); obviously bounded solutions do not
exist if the operator (4.17) is not a bounded one.

The result in (4.16) should be expressed in x = x(s,) and & = we(x) only.
If we want the solution 4’(x, &) to be finite for any value of x and &, then the
operator (4.17) must have the same properties.

Before proceeding further into the investigation of some examples we
draw attention to the interpretation of the conditions of order 0, i.c.

1
n AP =0 (2.13a)
as the initial conditions for the system (4.12). Multiplying it by #* we obtain

7ot 0, AY 4+ I8 A =0 @.18)
or, because of the obvious relation,
né,n* = (dlds)n* =0 4.19)
d_ . 1., i,
pA (A A} +nF U5 A5 =0 (4.20)

This in turn can be regarded as a system of ordinary differential equations
for the quantities n"Alf if the following relation holds:
nt Ub =wpn 4.21)
where W ! is an arbitrary non-singular matrix.
This is possible if and only if
wn, U =0 (4.22)
In the radiative coordinates and in the Minkowskian space-time the

condition (4.22) reduces just to
L =0 (4.23)

In such a case the system (4.20) is equivalent to a system of ordinary
1

differential equations (homogeneous) for the quantities n* A%, and if the
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1
condition n* A2’ = 0 holds on a hypersurface transverse to n*, then it holds
everywhere in the space-time.
Since we impose the regularity condmons on the functions A,,”(x ), the

same will be true for the expression n"A b
Now we are ready to proceed with some specific examples.

5. Radiative Perturbations of Some Trivial Exact Solutions

Let us now apply this formalism to some known exact solutions of the
Yang-Mills field equations. We begin by the most trivial case, when

= QP 4,(x), O° being a constant vector in the Lie algebra of the gauge
group G. Then all the solutions verify the Maxwell equations in vacuo, but
do not obey the superposition principle.
Let us suppose that the non-perturbed potential describes a plane wave
in the direction of the x-axis:

= Q”‘/)Ii(x), (5.1)
(4]

(o] 0
A;=0, A, =0, A, =sin (kx — wt), A, =cos (kx — wt)
(5.2)

1 4]
It is obvious that there exists a solution for A; just proportional to 4,
because for such solutions the superposition principle holds (cf. Kerner,
1971). Let us verify then if an asymptotic plane wave solution exists along
any other axis which, by a linear transformation, can be chosen as y-axis.
So, without loss in generality, we suppose

o=k y—wt, with k% ¢? = w,> (5.3)
Next, introduce the radiative coordinates:

X=p=ky—wt=u

s=kiy+owt,
and x, z the same as before, Then
m=1, ng=n, =n, =0
n* = -2w,2, W=n"=n=0
g% = 20,2, g&=g®=0 (5.4)

We have also

0 21 ®
A, =0, , = CO8 (kx ~ o, (s— u)) (5.5)
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The matrix L1%] takes on the following form:
1 0 o
- W U Zi = (Qb Qc - Qa Qa 5cb)gjm1?sm Ak (5°6)

In order to simplify the system (4.12) we have to diagonalise first the matrix
(Q*Q.— 0°Q,0.2); this can always be done because of its obvious sym-

1
metry. Then we obtain the following system for the quantities A;: (the
prime means derivative with respect to £):

%Als' +2w12[@k—licoslsin,l/11;+4wajkl sinZAAz'] =0
%1‘11;'—*0 %22'+ZQIZ[ZLICICOSZ/I/I!;+—2—%sinlcos)u}12’] =0
Ed‘«g/i.;~Zwlz%coslsinlzg+2w121?€kl—zcoslsinﬂ/i;

+ 4;:  sin® 2 A=

with
A=kx— 2 (s —u) (.7)
- 2w, ’
1 1

Eliminating 4; and 4, from these equations by virtue of the necessary
(2.13) relation n' A; = 0 will give us finally

4

ds
i.e. the solution constant along the rays. The complete solution is of the
form P> A, where P? is an eigenvector of the matrix

A;=0 (5.8)

(Qb Qc - Qa Qa 5cb) (58&)
As our next example we shall take the following potential:
]
Ap=¢[1.0.0,0] (59
where
r2=x24y? + 22 (5.10)

Let us first look at the spherical asymptotic wave: we take
u=q@=kr— ot, with ¢2k? = @?
s=kr+ ot (5.1D

and the angles 9, ¢ unchanged, In these coordinates we have

0 1 1
o [—_Zw(s ) T 0] (5.12)
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0
and the only non-vanishing component of Fy; is

0 2k
us =~ Gty (5.13)
The only non-vanishing components of the matrix %] are
8w? k? 1
—Lg = U= (2" 0. — 0° Q.0.") +6.° (5.14)

(s+up (s+u)

As before, from the zero-order condition we have A_,f =0, so that finally
we obtain the following set of equations (after diagonalising the matrix
(5.82)):
d1 1
A
TeFw (s+u)
and the solutions are the usual spherical waves.

As a third example we take an asymptotic plane wave with a static
potential Q%r as a background. We put

Ai 0 (5.15)

u=@="kx—ot, §=kx+ wt

¥, z the same then we get

I 1

A==ty 515 0.0] an

and the non-vanishing components of the tensor F;; are
2k y
Fa=grr = ha=p
z

qu=_Fzs=E§ (5.17)

with
2
r2= (s;:) +y2 422

Then we get the following equations for 4; (after diagonalisation of the
matrix (5.8)):

d 1, dt _d}
TA=0 A= A=0

dt 'y 1 2 1
ds”* dp?r® y_4co2r5Az=0 G.17)

1 1
Because of nf4; =0 we get A, =0.
The solution again is a plane wave with the subsidiary condition

1 1
yA,+zA4,=0 (5.18)
All the aforementioned cases verify, of course, the condition (4.22).
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6. Conclusion

The few examples we have considered above give us very restrictive
results: the only possible asymptotic solutions which can be superposed
with the trivial background field by means of the W.K.B. technique are
themselves trivial; there is almost no trace of the interaction of the Yang-
Mills field with itself. There are two main reasons for this. First, we have
looked only upon the trivial background; second, that we were developing
the asymptotic wave with the parameter w~*, which means that the energy
of the asymptotic wave is of the same order as the energy of the background
field. The results are thus comparable to the solutions obtained by just
considering the possibilities of superposition of the factorisable solutions of
the electro-magnetic type (cf. Kerner, 1971). Different and more interesting
results can be obtained by modifying the W.K.B. method and assuming
that the energy of the asymptotic wave is very small as compared to
the energy of the background field, and using the ratio of the two energies
as a parameter in the development.

These results will be given in our next paper.
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